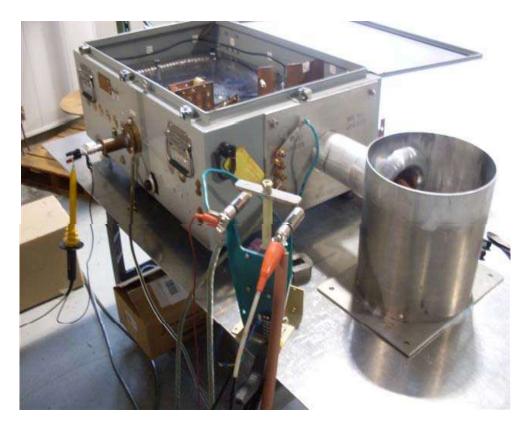

RF Systems

Tom Hardek February 2 – 4, 2010


RF Systems – Presentation Outline

- Equipment Status
 - Ion Source RF
 - RFQ
 - MEBT Rebuncher System
 - Warm Linac RF
 - Superconducting Linac RF
 - Ring RF
 - Low Level RF
 - RF Test Stand
- Reliability Issues
- Klystron Spares
- Operation at 95 % Beam Availability
- Summary

Ion Source RF

- Goal is to operate with a Solid State amplifier at ground
- Prototype 2 MHz High Voltage Isolation Transformer

- 1:1 Transmission Line Transformer
- Hi Pot tested to 80 kV
- Operated with 60 kW of RF for extended period
- Preparing a fully operational test producing lon Beam
- Will ultimately combine the matching network and isolation transformer

Ion Source RF

Tomco Solid State 2 MHz Amplifier

- 120 kW in 2 racks
- First unit in our lab
 - Setting up for Site Acceptance Test
- Second unit on order
 - Anticipate April delivery
- Each amplifier rack can operate independently
- Each rack produces 60 kW

RFQ Status

- Retuned RFQ after a major shift in frequency and field flatness last year (January 2009)
 - Seems to be the result of a vane shifting due to a water pressure surge during maintenance
 - Similar to shift that occurred several years ago
 - Concerned another shift could take place
 - May have field errors we do not observe
- Working on obtaining a spare
 - Prepared specification
 - Received bids from several possible vendors
 - Working on clarifying some items with vendors
- Had issues with loss of resonance control at high duty after several hours of operation
 - Limiting Ion Source gas flow
 - Upgraded water manifold to improve cooling
 - Added feedback loops to LLRF control page to regulate pulse width and chiller temperature
 - Added pressure relief valves
 - Changed pumps in chiller

MEBT Rebuncher Amplifier System

• Now operating the system at design power levels (20 kW)

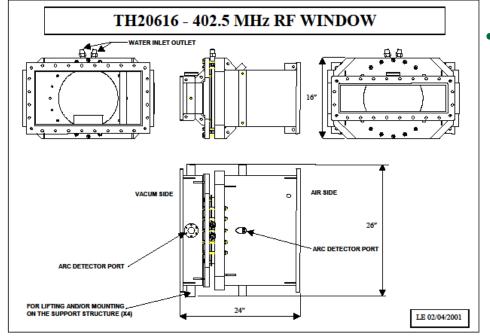
Capacitor Charging Supply

- Installed Capacitor Charging supplies in existing amplifiers
 - The amplifiers still trip off but can be reset from the Control Room
 - Down time now near zero
- We are now running Cavity 4 from a Tomco Solid State amplifier
- Have remaining Solid State amplifiers on order
 - Delivery in April
 - Will install a total of 5 amplifiers with the 5th amplifier able to be remotely switched to power any cavity
 - We are presently installing racks, switch networks, LLRF, and all cabling
 - Will install the amplifiers during summer maintenance period
 - Existing system will remain in place and can be connected if necessary

MEBT Rebuncher Amplifier System First MEBT RF Amplifier – Now Operating Cavity 4

Tomco Solid State Amplifier

7 Managed by UT-Battelle for the U.S. Department of Energy


Switching Assembly, Circulators, Directional Couplers

Racks waiting for Amplifiers SNS AAC Review Feb. 2-4, 2010

Warm Linac Issues

- Vacuum Leak on DTL-6 RF window
 - Traced to a braze joint in the vacuum side waveguide section
 - May have a similar problem on several windows
 - RF conditioned 2 spare windows
 - Replaced DTL-6 window this maintenance period
 - Have 3 spare windows on order
 - These will have the waveguide joint welded
 - Planning to build 3 more spare windows in-house

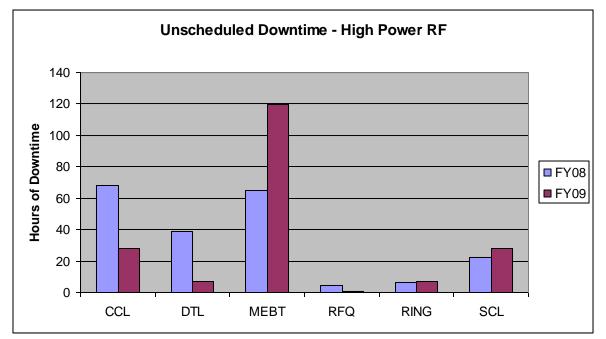
Klystron Anticipated Lifetime

18:33:56	NC HPRF Perveance Values				RF Screen	EXI	
RF Structure	Mod V (KV)	Cath I (A)	Perveance	Factory Value	Nominal Power (MW)	Modulator Pulse Length	XMTR Time Pulse Delay
RFQ	0.5	0.00	0.0000e+00	0.780	0.768	1300.0	0.51
DTL 1	н	0.00	0.0000e+00	0.790	0.545		0.48
2	н	0.00	0.0000e+00	0.790	1.532		0.48
3	0.7	0.00	0.0000e+00	0.780	1.791	785.0	0.42
4	н	0.00	0.0000e+00	0.790	1.804		0.42
5	0.4	0.00	0.0000e+00	0.740	1.775	1185.0	0.42
6	н	0.00	0.0000e+00	0.810	1.700		0.42
CCL 1	0.3	0.00	0.0000e+00	1.420	2.805	785.0	0.77
2	0.5	0.00	0.0000e+00	1.400	3.239	785.0	0.77
3	0.7	0.00	0.0000e+00	1.440	3.322	785.0	0.77
4	0.8	0.00	0.0000e+00	1.490	3.412	1185.0	0.77

- Previously recorded perveance data is hard to interpret due to changing modulator pulse length
 - Voltage is recorded as an average value and droops throughout the pulse
 - Current is recorded at selected time into cycle
 - Analyzing existing data
- We have recently recorded waveform data for each klystron
- We have added a screen to display perveance and are data-logging the parameters
- Developed multichannel power meter with extra channels to record klystron voltage and current waveforms and calculate perveance
- Several installed in the klystron gallery

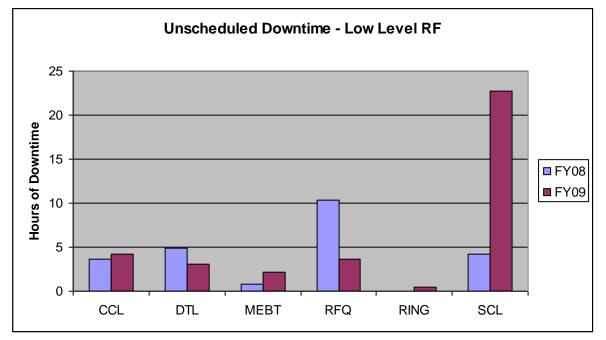
SCL RF

- Now operating klystrons at design cathode voltage of 75 kV
- Replaced 9 Thales klystrons
 - 3 klystrons showed instability issues
 - All Thales klystrons have high gain
 - Plan to replace the remaining 2 next maintenance period
- Suffered arcing condition in SCL-5A coupler
 - We were able to recover this cavity
- Beam loss injured cavities SCL-5A and SCL 6C
 - Made some progress recovering SCL-5A
 - Hope to recover both cavities by careful conditioning



Ring RF

- Replacing QEI driver amplifiers
 - We have had several QEI amplifiers fail
 - We have one amplifier we have not been able to repair
 - Can no longer acquire replacement components
 - Have purchased Tomco amplifiers identical to the sub-system amplifiers used in the new Ion Source amplifier.
- Had several failed Lambda ALE anode supplies
 - Had a variety of failure causes
 - Working with Lambda to develop in-house repair capability


Unscheduled Downtime – High Power RF

- MEBT Rebuncher amplifiers are the major contributing item
 - In FY 08 we allowed the operations staff to reset tripped circuit breakers
 - After inspecting the circuit breakers and finding significant damage we installed fast acting fuses requiring a technician to travel to the site to replace blown fuses
 - We have replaced the power supplies with Capacitor Charging supplies designed to recharge the filter capacitors in a current regulated mode
 - Even though the faults still occur we no longer open fuses or circuit breakers
 - The LLRF system shuts down the drive but can be quickly reset by operations staff
 - MEBT RF Downtime practically eliminated

Unscheduled Downtime – Low Level RF

SCL is the major contributing item

- The majority of downtime is from the LLRF protecting real cavity fault conditions
- 05a and 06c events were responsible for most of SCL downtime during recent run See SH Kim talk (includes time to retune)
- We are considering adding a category to better address this downtime

LLRF Issues and Improvements

- Input/output Controller (IOC) is heavily loaded resulting in performance limitations
 - Current IOC >85% utilized
 - Some data reduction was required to support adaptive feed-forward for 825 µs beam time
 - Pulse data is still occasionally missed
- Replacement IOC's have been purchased
 - Improved data throughput to lower IOC loading
 - Awaiting testing & implementation

LLRF Temperature Stabilization

- Development of 50 MHz Baseband Analog Front End (AFE) and RF Output (RFO)
 - Removes temperature sensitive components from Field Control Module (FCM)
 - Solves end-of-life issues with some components
 - Creates a "universal" controller
 - Can use controller with modified frequency converter for Ring, Ion Source, FNAL RF, etc.
- Temperature stabilized frequency converter chassis to replace down-converter
 - Moves all frequency dependant components from FCM
 - Solves temperature drift issue on FCM

RF Test Stand

- Primary test stand for RF components
 - 402.5 & 805 MHz klystrons routinely tested
 - Window conditioning
 - Support for SCL cavity testing
 - HVCM testing to support development efforts

Klystrons Spares Inventory

- DTL: 2.5 MW, 402.5 MHz (7 in service)
 - E2V ----- 4 each
 - Thales ---- 3 each
- CCL: 5 MW, 805 MHz (4 in service)
 - Thales ---- 3 usable -1 fully conditioned
 - ---- 1 Failed with an internal high voltage connection issue (Working with Thales)
 - ---- 1 Failed with loss of vacuum
 - ---- Procurement of 4 additional klystrons in process
- SCL: 550 kW, 805 MHz (81 in service)
 - CPI ----- 11 original
 - ----- 29 each 700 kW version (replaced 9 Thales)
 - Thales ----- 3 each (9 Thales with 6 usable)
- Gridded Tubes
 - Ring RF Tetrode: 500 kW Tetrode TH558/4CM500,000G (4 in service)
 - Thales ----- 3 each
 - CPI ----- 1 each
 - Ion Source Tetrode: 20 kW Tetrode (4CX20000)
 - CPI ------ 2 each (Readily available from several sources)
 - MEBT Triode: 5 kW Triode (3CX5000)
- Managed by UT-Battelle CPI ------ 2 each

for the U.S. Department of Energy

Operation at 95 Percent Beam Availability

- For operation with 95% beam availability the RF system goal is 38 hours per 5000 yearly operating hours (99.24% availability)
- Monitor Perveance of all klystrons
 - We have initiated a program to obtain this data
- MEBT Rebunchers
 - Replace the Hard-Tube amplifiers with Solid-State units
 - Understand the X-ray emission from existing cavities
 - Build spare cavities
- RFQ
 - Prepare a spare structure
- Linac
 - Remove voltage limitations on converter-modulator
 - Remove converter-modulator droop
 - Condition spare klystrons to full duty factor

Operation at 95 Percent Beam Availability

- SCL Linac
 - Resolve the issue of tripping 20 cavities when a single klystron has a cathode arc
 - Inhibit HV pulsing instead of shutting down the modulator
 - Add redundant power supplies where possible
 - Improve cavity protection schemes
- Ring RF
 - Replace driver amplifiers
 - Produce spare cavity and final amplifier
 - Install in Ring as a dedicated spare switchable to either 1 or 2 MHz
 - Provide complete spare transmitter and LLRF system
 - Improve Lock/Tag/Verification process
- Low Level RF
 - Improve SCL protection software to reduce chatter fault trips
 - Replace existing Analog Front End and Output Amplifier with a temperature controlled version
 - Provide Master Oscillator with Amplitude regulation
 - Re-design LLRF modules replacing obsolete components

Summary

- There remains significant Ion Source RF System work
- MEBT RF has a clear path to completion
- Warm LINAC still has some problems
- SCL RF Power limitation is being resolved
- We are beginning to acquire Klystron Perveance Data
 - Analyzing archive data
- Working on identifying reliability issues and formulating a plan for high beam availability

